from __future__ import annotations

import warnings
from importlib import util
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Literal,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
    overload,
)

from langchain_core.language_models import (
    BaseChatModel,
    LanguageModelInput,
    SimpleChatModel,
)
from langchain_core.language_models.chat_models import (
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import AnyMessage, BaseMessage
from langchain_core.runnables import Runnable, RunnableConfig, ensure_config
from langchain_core.runnables.schema import StreamEvent
from langchain_core.tools import BaseTool
from langchain_core.tracers import RunLog, RunLogPatch
from pydantic import BaseModel
from typing_extensions import TypeAlias

__all__ = [
    "init_chat_model",
    # For backwards compatibility
    "BaseChatModel",
    "SimpleChatModel",
    "generate_from_stream",
    "agenerate_from_stream",
]


@overload
def init_chat_model(  # type: ignore[overload-overlap]
    model: str,
    *,
    model_provider: Optional[str] = None,
    configurable_fields: Literal[None] = None,
    config_prefix: Optional[str] = None,
    **kwargs: Any,
) -> BaseChatModel: ...


@overload
def init_chat_model(
    model: Literal[None] = None,
    *,
    model_provider: Optional[str] = None,
    configurable_fields: Literal[None] = None,
    config_prefix: Optional[str] = None,
    **kwargs: Any,
) -> _ConfigurableModel: ...


@overload
def init_chat_model(
    model: Optional[str] = None,
    *,
    model_provider: Optional[str] = None,
    configurable_fields: Union[Literal["any"], List[str], Tuple[str, ...]] = ...,
    config_prefix: Optional[str] = None,
    **kwargs: Any,
) -> _ConfigurableModel: ...


# FOR CONTRIBUTORS: If adding support for a new provider, please append the provider
# name to the supported list in the docstring below. Do *not* change the order of the
# existing providers.
def init_chat_model(
    model: Optional[str] = None,
    *,
    model_provider: Optional[str] = None,
    configurable_fields: Optional[
        Union[Literal["any"], List[str], Tuple[str, ...]]
    ] = None,
    config_prefix: Optional[str] = None,
    **kwargs: Any,
) -> Union[BaseChatModel, _ConfigurableModel]:
    """Initialize a ChatModel from the model name and provider.

    **Note:** Must have the integration package corresponding to the model provider
    installed.

    Args:
        model: The name of the model, e.g. "gpt-4o", "claude-3-opus-20240229".
        model_provider: The model provider. Supported model_provider values and the
            corresponding integration package are:

            - 'openai'              -> langchain-openai
            - 'anthropic'           -> langchain-anthropic
            - 'azure_openai'        -> langchain-openai
            - 'google_vertexai'     -> langchain-google-vertexai
            - 'google_genai'        -> langchain-google-genai
            - 'bedrock'             -> langchain-aws
            - 'bedrock_converse'    -> langchain-aws
            - 'cohere'              -> langchain-cohere
            - 'fireworks'           -> langchain-fireworks
            - 'together'            -> langchain-together
            - 'mistralai'           -> langchain-mistralai
            - 'huggingface'         -> langchain-huggingface
            - 'groq'                -> langchain-groq
            - 'ollama'              -> langchain-ollama

            Will attempt to infer model_provider from model if not specified. The
            following providers will be inferred based on these model prefixes:

            - 'gpt-3...' | 'gpt-4...' | 'o1...' -> 'openai'
            - 'claude...'                       -> 'anthropic'
            - 'amazon....'                      -> 'bedrock'
            - 'gemini...'                       -> 'google_vertexai'
            - 'command...'                      -> 'cohere'
            - 'accounts/fireworks...'           -> 'fireworks'
            - 'mistral...'                      -> 'mistralai'
        configurable_fields: Which model parameters are
            configurable:

            - None: No configurable fields.
            - "any": All fields are configurable. *See Security Note below.*
            - Union[List[str], Tuple[str, ...]]: Specified fields are configurable.

            Fields are assumed to have config_prefix stripped if there is a
            config_prefix. If model is specified, then defaults to None. If model is
            not specified, then defaults to ``("model", "model_provider")``.

            ***Security Note***: Setting ``configurable_fields="any"`` means fields like
            api_key, base_url, etc. can be altered at runtime, potentially redirecting
            model requests to a different service/user. Make sure that if you're
            accepting untrusted configurations that you enumerate the
            ``configurable_fields=(...)`` explicitly.

        config_prefix: If config_prefix is a non-empty string then model will be
            configurable at runtime via the
            ``config["configurable"]["{config_prefix}_{param}"]`` keys. If
            config_prefix is an empty string then model will be configurable via
            ``config["configurable"]["{param}"]``.
        temperature: Model temperature.
        max_tokens: Max output tokens.
        timeout: The maximum time (in seconds) to wait for a response from the model
            before canceling the request.
        max_retries: The maximum number of attempts the system will make to resend a
            request if it fails due to issues like network timeouts or rate limits.
        base_url: The URL of the API endpoint where requests are sent.
        rate_limiter: A ``BaseRateLimiter`` to space out requests to avoid exceeding
            rate limits.
        kwargs: Additional model-specific keyword args to pass to
            ``<<selected ChatModel>>.__init__(model=model_name, **kwargs)``.

    Returns:
        A BaseChatModel corresponding to the model_name and model_provider specified if
        configurability is inferred to be False. If configurable, a chat model emulator
        that initializes the underlying model at runtime once a config is passed in.

    Raises:
        ValueError: If model_provider cannot be inferred or isn't supported.
        ImportError: If the model provider integration package is not installed.

    .. dropdown:: Init non-configurable model
        :open:

        .. code-block:: python

            # pip install langchain langchain-openai langchain-anthropic langchain-google-vertexai
            from langchain.chat_models import init_chat_model

            gpt_4o = init_chat_model("gpt-4o", model_provider="openai", temperature=0)
            claude_opus = init_chat_model("claude-3-opus-20240229", model_provider="anthropic", temperature=0)
            gemini_15 = init_chat_model("gemini-1.5-pro", model_provider="google_vertexai", temperature=0)

            gpt_4o.invoke("what's your name")
            claude_opus.invoke("what's your name")
            gemini_15.invoke("what's your name")


    .. dropdown:: Partially configurable model with no default

        .. code-block:: python

            # pip install langchain langchain-openai langchain-anthropic
            from langchain.chat_models import init_chat_model

            # We don't need to specify configurable=True if a model isn't specified.
            configurable_model = init_chat_model(temperature=0)

            configurable_model.invoke(
                "what's your name",
                config={"configurable": {"model": "gpt-4o"}}
            )
            # GPT-4o response

            configurable_model.invoke(
                "what's your name",
                config={"configurable": {"model": "claude-3-5-sonnet-20240620"}}
            )
            # claude-3.5 sonnet response

    .. dropdown:: Fully configurable model with a default

        .. code-block:: python

            # pip install langchain langchain-openai langchain-anthropic
            from langchain.chat_models import init_chat_model

            configurable_model_with_default = init_chat_model(
                "gpt-4o",
                model_provider="openai",
                configurable_fields="any",  # this allows us to configure other params like temperature, max_tokens, etc at runtime.
                config_prefix="foo",
                temperature=0
            )

            configurable_model_with_default.invoke("what's your name")
            # GPT-4o response with temperature 0

            configurable_model_with_default.invoke(
                "what's your name",
                config={
                    "configurable": {
                        "foo_model": "claude-3-5-sonnet-20240620",
                        "foo_model_provider": "anthropic",
                        "foo_temperature": 0.6
                    }
                }
            )
            # Claude-3.5 sonnet response with temperature 0.6

    .. dropdown:: Bind tools to a configurable model

        You can call any ChatModel declarative methods on a configurable model in the
        same way that you would with a normal model.

        .. code-block:: python

            # pip install langchain langchain-openai langchain-anthropic
            from langchain.chat_models import init_chat_model
            from pydantic import BaseModel, Field

            class GetWeather(BaseModel):
                '''Get the current weather in a given location'''

                location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

            class GetPopulation(BaseModel):
                '''Get the current population in a given location'''

                location: str = Field(..., description="The city and state, e.g. San Francisco, CA")

            configurable_model = init_chat_model(
                "gpt-4o",
                configurable_fields=("model", "model_provider"),
                temperature=0
            )

            configurable_model_with_tools = configurable_model.bind_tools([GetWeather, GetPopulation])
            configurable_model_with_tools.invoke(
                "Which city is hotter today and which is bigger: LA or NY?"
            )
            # GPT-4o response with tool calls

            configurable_model_with_tools.invoke(
                "Which city is hotter today and which is bigger: LA or NY?",
                config={"configurable": {"model": "claude-3-5-sonnet-20240620"}}
            )
            # Claude-3.5 sonnet response with tools

    .. versionadded:: 0.2.7

    .. versionchanged:: 0.2.8

        Support for ``configurable_fields`` and ``config_prefix`` added.

    .. versionchanged:: 0.2.12

        Support for ChatOllama via langchain-ollama package added
        (langchain_ollama.ChatOllama). Previously,
        the now-deprecated langchain-community version of Ollama was imported
        (langchain_community.chat_models.ChatOllama).

        Support for langchain_aws.ChatBedrockConverse added
        (model_provider="bedrock_converse").

    .. versionchanged:: 0.3.5

        Out of beta.

    """  # noqa: E501
    if not model and not configurable_fields:
        configurable_fields = ("model", "model_provider")
    config_prefix = config_prefix or ""
    if config_prefix and not configurable_fields:
        warnings.warn(
            f"{config_prefix=} has been set but no fields are configurable. Set "
            f"`configurable_fields=(...)` to specify the model params that are "
            f"configurable."
        )

    if not configurable_fields:
        return _init_chat_model_helper(
            cast(str, model), model_provider=model_provider, **kwargs
        )
    else:
        if model:
            kwargs["model"] = model
        if model_provider:
            kwargs["model_provider"] = model_provider
        return _ConfigurableModel(
            default_config=kwargs,
            config_prefix=config_prefix,
            configurable_fields=configurable_fields,
        )


def _init_chat_model_helper(
    model: str, *, model_provider: Optional[str] = None, **kwargs: Any
) -> BaseChatModel:
    model, model_provider = _parse_model(model, model_provider)
    if model_provider == "openai":
        _check_pkg("langchain_openai")
        from langchain_openai import ChatOpenAI

        return ChatOpenAI(model=model, **kwargs)
    elif model_provider == "anthropic":
        _check_pkg("langchain_anthropic")
        from langchain_anthropic import ChatAnthropic

        return ChatAnthropic(model=model, **kwargs)  # type: ignore[call-arg]
    elif model_provider == "azure_openai":
        _check_pkg("langchain_openai")
        from langchain_openai import AzureChatOpenAI

        return AzureChatOpenAI(model=model, **kwargs)
    elif model_provider == "cohere":
        _check_pkg("langchain_cohere")
        from langchain_cohere import ChatCohere

        return ChatCohere(model=model, **kwargs)
    elif model_provider == "google_vertexai":
        _check_pkg("langchain_google_vertexai")
        from langchain_google_vertexai import ChatVertexAI

        return ChatVertexAI(model=model, **kwargs)
    elif model_provider == "google_genai":
        _check_pkg("langchain_google_genai")
        from langchain_google_genai import ChatGoogleGenerativeAI

        return ChatGoogleGenerativeAI(model=model, **kwargs)
    elif model_provider == "fireworks":
        _check_pkg("langchain_fireworks")
        from langchain_fireworks import ChatFireworks

        return ChatFireworks(model=model, **kwargs)
    elif model_provider == "ollama":
        try:
            _check_pkg("langchain_ollama")
            from langchain_ollama import ChatOllama
        except ImportError:
            # For backwards compatibility
            try:
                _check_pkg("langchain_community")
                from langchain_community.chat_models import ChatOllama
            except ImportError:
                # If both langchain-ollama and langchain-community aren't available,
                # raise an error related to langchain-ollama
                _check_pkg("langchain_ollama")

        return ChatOllama(model=model, **kwargs)
    elif model_provider == "together":
        _check_pkg("langchain_together")
        from langchain_together import ChatTogether

        return ChatTogether(model=model, **kwargs)
    elif model_provider == "mistralai":
        _check_pkg("langchain_mistralai")
        from langchain_mistralai import ChatMistralAI

        return ChatMistralAI(model=model, **kwargs)  # type: ignore[call-arg]
    elif model_provider == "huggingface":
        _check_pkg("langchain_huggingface")
        from langchain_huggingface import ChatHuggingFace

        return ChatHuggingFace(model_id=model, **kwargs)
    elif model_provider == "groq":
        _check_pkg("langchain_groq")
        from langchain_groq import ChatGroq

        return ChatGroq(model=model, **kwargs)
    elif model_provider == "bedrock":
        _check_pkg("langchain_aws")
        from langchain_aws import ChatBedrock

        # TODO: update to use model= once ChatBedrock supports
        return ChatBedrock(model_id=model, **kwargs)
    elif model_provider == "bedrock_converse":
        _check_pkg("langchain_aws")
        from langchain_aws import ChatBedrockConverse

        return ChatBedrockConverse(model=model, **kwargs)
    else:
        supported = ", ".join(_SUPPORTED_PROVIDERS)
        raise ValueError(
            f"Unsupported {model_provider=}.\n\nSupported model providers are: "
            f"{supported}"
        )


_SUPPORTED_PROVIDERS = {
    "openai",
    "anthropic",
    "azure_openai",
    "cohere",
    "google_vertexai",
    "google_genai",
    "fireworks",
    "ollama",
    "together",
    "mistralai",
    "huggingface",
    "groq",
    "bedrock",
    "bedrock_converse",
}


def _attempt_infer_model_provider(model_name: str) -> Optional[str]:
    if any(model_name.startswith(pre) for pre in ("gpt-3", "gpt-4", "o1")):
        return "openai"
    elif model_name.startswith("claude"):
        return "anthropic"
    elif model_name.startswith("command"):
        return "cohere"
    elif model_name.startswith("accounts/fireworks"):
        return "fireworks"
    elif model_name.startswith("gemini"):
        return "google_vertexai"
    elif model_name.startswith("amazon."):
        return "bedrock"
    elif model_name.startswith("mistral"):
        return "mistralai"
    else:
        return None


def _parse_model(model: str, model_provider: Optional[str]) -> Tuple[str, str]:
    if (
        not model_provider
        and ":" in model
        and model.split(":")[0] in _SUPPORTED_PROVIDERS
    ):
        model_provider = model.split(":")[0]
        model = ":".join(model.split(":")[1:])
    model_provider = model_provider or _attempt_infer_model_provider(model)
    if not model_provider:
        raise ValueError(
            f"Unable to infer model provider for {model=}, please specify "
            f"model_provider directly."
        )
    model_provider = model_provider.replace("-", "_").lower()
    return model, model_provider


def _check_pkg(pkg: str) -> None:
    if not util.find_spec(pkg):
        pkg_kebab = pkg.replace("_", "-")
        raise ImportError(
            f"Unable to import {pkg_kebab}. Please install with "
            f"`pip install -U {pkg_kebab}`"
        )


def _remove_prefix(s: str, prefix: str) -> str:
    if s.startswith(prefix):
        s = s[len(prefix) :]
    return s


_DECLARATIVE_METHODS = ("bind_tools", "with_structured_output")


class _ConfigurableModel(Runnable[LanguageModelInput, Any]):
    def __init__(
        self,
        *,
        default_config: Optional[dict] = None,
        configurable_fields: Union[Literal["any"], List[str], Tuple[str, ...]] = "any",
        config_prefix: str = "",
        queued_declarative_operations: Sequence[Tuple[str, Tuple, Dict]] = (),
    ) -> None:
        self._default_config: dict = default_config or {}
        self._configurable_fields: Union[Literal["any"], List[str]] = (
            configurable_fields
            if configurable_fields == "any"
            else list(configurable_fields)
        )
        self._config_prefix = (
            config_prefix + "_"
            if config_prefix and not config_prefix.endswith("_")
            else config_prefix
        )
        self._queued_declarative_operations: List[Tuple[str, Tuple, Dict]] = list(
            queued_declarative_operations
        )

    def __getattr__(self, name: str) -> Any:
        if name in _DECLARATIVE_METHODS:
            # Declarative operations that cannot be applied until after an actual model
            # object is instantiated. So instead of returning the actual operation,
            # we record the operation and its arguments in a queue. This queue is
            # then applied in order whenever we actually instantiate the model (in
            # self._model()).
            def queue(*args: Any, **kwargs: Any) -> _ConfigurableModel:
                queued_declarative_operations = list(
                    self._queued_declarative_operations
                )
                queued_declarative_operations.append((name, args, kwargs))
                return _ConfigurableModel(
                    default_config=dict(self._default_config),
                    configurable_fields=list(self._configurable_fields)
                    if isinstance(self._configurable_fields, list)
                    else self._configurable_fields,
                    config_prefix=self._config_prefix,
                    queued_declarative_operations=queued_declarative_operations,
                )

            return queue
        elif self._default_config and (model := self._model()) and hasattr(model, name):
            return getattr(model, name)
        else:
            msg = f"{name} is not a BaseChatModel attribute"
            if self._default_config:
                msg += " and is not implemented on the default model"
            msg += "."
            raise AttributeError(msg)

    def _model(self, config: Optional[RunnableConfig] = None) -> Runnable:
        params = {**self._default_config, **self._model_params(config)}
        model = _init_chat_model_helper(**params)
        for name, args, kwargs in self._queued_declarative_operations:
            model = getattr(model, name)(*args, **kwargs)
        return model

    def _model_params(self, config: Optional[RunnableConfig]) -> dict:
        config = ensure_config(config)
        model_params = {
            _remove_prefix(k, self._config_prefix): v
            for k, v in config.get("configurable", {}).items()
            if k.startswith(self._config_prefix)
        }
        if self._configurable_fields != "any":
            model_params = {
                k: v for k, v in model_params.items() if k in self._configurable_fields
            }
        return model_params

    def with_config(
        self,
        config: Optional[RunnableConfig] = None,
        **kwargs: Any,
    ) -> _ConfigurableModel:
        """Bind config to a Runnable, returning a new Runnable."""
        config = RunnableConfig(**(config or {}), **cast(RunnableConfig, kwargs))
        model_params = self._model_params(config)
        remaining_config = {k: v for k, v in config.items() if k != "configurable"}
        remaining_config["configurable"] = {
            k: v
            for k, v in config.get("configurable", {}).items()
            if _remove_prefix(k, self._config_prefix) not in model_params
        }
        queued_declarative_operations = list(self._queued_declarative_operations)
        if remaining_config:
            queued_declarative_operations.append(
                ("with_config", (), {"config": remaining_config})
            )
        return _ConfigurableModel(
            default_config={**self._default_config, **model_params},
            configurable_fields=list(self._configurable_fields)
            if isinstance(self._configurable_fields, list)
            else self._configurable_fields,
            config_prefix=self._config_prefix,
            queued_declarative_operations=queued_declarative_operations,
        )

    @property
    def InputType(self) -> TypeAlias:
        """Get the input type for this runnable."""
        from langchain_core.prompt_values import (
            ChatPromptValueConcrete,
            StringPromptValue,
        )

        # This is a version of LanguageModelInput which replaces the abstract
        # base class BaseMessage with a union of its subclasses, which makes
        # for a much better schema.
        return Union[
            str,
            Union[StringPromptValue, ChatPromptValueConcrete],
            List[AnyMessage],
        ]

    def invoke(
        self,
        input: LanguageModelInput,
        config: Optional[RunnableConfig] = None,
        **kwargs: Any,
    ) -> Any:
        return self._model(config).invoke(input, config=config, **kwargs)

    async def ainvoke(
        self,
        input: LanguageModelInput,
        config: Optional[RunnableConfig] = None,
        **kwargs: Any,
    ) -> Any:
        return await self._model(config).ainvoke(input, config=config, **kwargs)

    def stream(
        self,
        input: LanguageModelInput,
        config: Optional[RunnableConfig] = None,
        **kwargs: Optional[Any],
    ) -> Iterator[Any]:
        yield from self._model(config).stream(input, config=config, **kwargs)

    async def astream(
        self,
        input: LanguageModelInput,
        config: Optional[RunnableConfig] = None,
        **kwargs: Optional[Any],
    ) -> AsyncIterator[Any]:
        async for x in self._model(config).astream(input, config=config, **kwargs):
            yield x

    def batch(
        self,
        inputs: List[LanguageModelInput],
        config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
        *,
        return_exceptions: bool = False,
        **kwargs: Optional[Any],
    ) -> List[Any]:
        config = config or None
        # If <= 1 config use the underlying models batch implementation.
        if config is None or isinstance(config, dict) or len(config) <= 1:
            if isinstance(config, list):
                config = config[0]
            return self._model(config).batch(
                inputs, config=config, return_exceptions=return_exceptions, **kwargs
            )
        # If multiple configs default to Runnable.batch which uses executor to invoke
        # in parallel.
        else:
            return super().batch(
                inputs, config=config, return_exceptions=return_exceptions, **kwargs
            )

    async def abatch(
        self,
        inputs: List[LanguageModelInput],
        config: Optional[Union[RunnableConfig, List[RunnableConfig]]] = None,
        *,
        return_exceptions: bool = False,
        **kwargs: Optional[Any],
    ) -> List[Any]:
        config = config or None
        # If <= 1 config use the underlying models batch implementation.
        if config is None or isinstance(config, dict) or len(config) <= 1:
            if isinstance(config, list):
                config = config[0]
            return await self._model(config).abatch(
                inputs, config=config, return_exceptions=return_exceptions, **kwargs
            )
        # If multiple configs default to Runnable.batch which uses executor to invoke
        # in parallel.
        else:
            return await super().abatch(
                inputs, config=config, return_exceptions=return_exceptions, **kwargs
            )

    def batch_as_completed(
        self,
        inputs: Sequence[LanguageModelInput],
        config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None,
        *,
        return_exceptions: bool = False,
        **kwargs: Any,
    ) -> Iterator[Tuple[int, Union[Any, Exception]]]:
        config = config or None
        # If <= 1 config use the underlying models batch implementation.
        if config is None or isinstance(config, dict) or len(config) <= 1:
            if isinstance(config, list):
                config = config[0]
            yield from self._model(cast(RunnableConfig, config)).batch_as_completed(  # type: ignore[call-overload]
                inputs, config=config, return_exceptions=return_exceptions, **kwargs
            )
        # If multiple configs default to Runnable.batch which uses executor to invoke
        # in parallel.
        else:
            yield from super().batch_as_completed(  # type: ignore[call-overload]
                inputs, config=config, return_exceptions=return_exceptions, **kwargs
            )

    async def abatch_as_completed(
        self,
        inputs: Sequence[LanguageModelInput],
        config: Optional[Union[RunnableConfig, Sequence[RunnableConfig]]] = None,
        *,
        return_exceptions: bool = False,
        **kwargs: Any,
    ) -> AsyncIterator[Tuple[int, Any]]:
        config = config or None
        # If <= 1 config use the underlying models batch implementation.
        if config is None or isinstance(config, dict) or len(config) <= 1:
            if isinstance(config, list):
                config = config[0]
            async for x in self._model(
                cast(RunnableConfig, config)
            ).abatch_as_completed(  # type: ignore[call-overload]
                inputs, config=config, return_exceptions=return_exceptions, **kwargs
            ):
                yield x
        # If multiple configs default to Runnable.batch which uses executor to invoke
        # in parallel.
        else:
            async for x in super().abatch_as_completed(  # type: ignore[call-overload]
                inputs, config=config, return_exceptions=return_exceptions, **kwargs
            ):
                yield x

    def transform(
        self,
        input: Iterator[LanguageModelInput],
        config: Optional[RunnableConfig] = None,
        **kwargs: Optional[Any],
    ) -> Iterator[Any]:
        for x in self._model(config).transform(input, config=config, **kwargs):
            yield x

    async def atransform(
        self,
        input: AsyncIterator[LanguageModelInput],
        config: Optional[RunnableConfig] = None,
        **kwargs: Optional[Any],
    ) -> AsyncIterator[Any]:
        async for x in self._model(config).atransform(input, config=config, **kwargs):
            yield x

    @overload
    def astream_log(
        self,
        input: Any,
        config: Optional[RunnableConfig] = None,
        *,
        diff: Literal[True] = True,
        with_streamed_output_list: bool = True,
        include_names: Optional[Sequence[str]] = None,
        include_types: Optional[Sequence[str]] = None,
        include_tags: Optional[Sequence[str]] = None,
        exclude_names: Optional[Sequence[str]] = None,
        exclude_types: Optional[Sequence[str]] = None,
        exclude_tags: Optional[Sequence[str]] = None,
        **kwargs: Any,
    ) -> AsyncIterator[RunLogPatch]: ...

    @overload
    def astream_log(
        self,
        input: Any,
        config: Optional[RunnableConfig] = None,
        *,
        diff: Literal[False],
        with_streamed_output_list: bool = True,
        include_names: Optional[Sequence[str]] = None,
        include_types: Optional[Sequence[str]] = None,
        include_tags: Optional[Sequence[str]] = None,
        exclude_names: Optional[Sequence[str]] = None,
        exclude_types: Optional[Sequence[str]] = None,
        exclude_tags: Optional[Sequence[str]] = None,
        **kwargs: Any,
    ) -> AsyncIterator[RunLog]: ...

    async def astream_log(
        self,
        input: Any,
        config: Optional[RunnableConfig] = None,
        *,
        diff: bool = True,
        with_streamed_output_list: bool = True,
        include_names: Optional[Sequence[str]] = None,
        include_types: Optional[Sequence[str]] = None,
        include_tags: Optional[Sequence[str]] = None,
        exclude_names: Optional[Sequence[str]] = None,
        exclude_types: Optional[Sequence[str]] = None,
        exclude_tags: Optional[Sequence[str]] = None,
        **kwargs: Any,
    ) -> Union[AsyncIterator[RunLogPatch], AsyncIterator[RunLog]]:
        async for x in self._model(config).astream_log(  # type: ignore[call-overload, misc]
            input,
            config=config,
            diff=diff,
            with_streamed_output_list=with_streamed_output_list,
            include_names=include_names,
            include_types=include_types,
            include_tags=include_tags,
            exclude_tags=exclude_tags,
            exclude_types=exclude_types,
            exclude_names=exclude_names,
            **kwargs,
        ):
            yield x

    async def astream_events(
        self,
        input: Any,
        config: Optional[RunnableConfig] = None,
        *,
        version: Literal["v1", "v2"],
        include_names: Optional[Sequence[str]] = None,
        include_types: Optional[Sequence[str]] = None,
        include_tags: Optional[Sequence[str]] = None,
        exclude_names: Optional[Sequence[str]] = None,
        exclude_types: Optional[Sequence[str]] = None,
        exclude_tags: Optional[Sequence[str]] = None,
        **kwargs: Any,
    ) -> AsyncIterator[StreamEvent]:
        async for x in self._model(config).astream_events(
            input,
            config=config,
            version=version,
            include_names=include_names,
            include_types=include_types,
            include_tags=include_tags,
            exclude_tags=exclude_tags,
            exclude_types=exclude_types,
            exclude_names=exclude_names,
            **kwargs,
        ):
            yield x

    # Explicitly added to satisfy downstream linters.
    def bind_tools(
        self,
        tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, BaseMessage]:
        return self.__getattr__("bind_tools")(tools, **kwargs)

    # Explicitly added to satisfy downstream linters.
    def with_structured_output(
        self, schema: Union[Dict, Type[BaseModel]], **kwargs: Any
    ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
        return self.__getattr__("with_structured_output")(schema, **kwargs)
