# mypy: allow-untyped-defs
# mypy: disable-error-code="method-assign"
import atexit
import copy
import cProfile
import functools
import getpass
import inspect
import itertools
import logging
import os
import re
import subprocess
import sys
import tempfile
import textwrap
from collections import Counter
from importlib import import_module
from typing import Any, Callable, Dict, List, Optional, TypeVar

import torch
import torch._prims_common as utils
import torch._subclasses.meta_utils
from torch import Tensor
from torch._dynamo.testing import rand_strided
from torch._prims_common import is_float_dtype
from torch.multiprocessing.reductions import StorageWeakRef
from torch.utils._content_store import ContentStoreReader, ContentStoreWriter

from . import config
from .utils import clone_inputs, get_debug_dir


log = logging.getLogger(__name__)

T = TypeVar("T")


inductor_config = import_module("torch._inductor.config")
use_buck = inductor_config.is_fbcode()

if use_buck:
    import libfb.py.build_info


extra_deps = []
extra_imports = ""
if use_buck:
    extra_deps = [
        "//caffe2/torch/fb/sparsenn:sparsenn_operators_gpu",
        "//caffe2/torch/fb/sparsenn:sparsenn_operators",
        "//deeplearning/fbgemm/fbgemm_gpu:sparse_ops_cpu",
        "//deeplearning/fbgemm/fbgemm_gpu:sparse_ops",
    ]
    cur_target = libfb.py.build_info.BuildInfo.get_build_rule().replace("fbcode:", "//")  # type: ignore[possibly-undefined]
    extra_imports = "\n".join([f'torch.ops.load_library("{x}")' for x in extra_deps])


BUCK_CMD_PREFIX = ["buck2", "run", "@mode/dev-nosan"]


class BuckTargetWriter:
    def __init__(self, filename):
        self.subdir, self.py_file = os.path.split(os.path.abspath(filename))
        self.target = self.py_file.replace(".py", "")

        # Get main_module path from fbcode
        self.path = f'{self.subdir.replace("/", ".")}.{self.target}'
        self.path = self.path[self.path.find("fbcode.") :]
        self.path = self.path[7:]

        # Get cmd line path
        tmp = self.subdir
        tmp = tmp[tmp.find("fbcode/") :][7:]
        self.cmd_line_path = f"//{tmp}:{self.target}"

    def build(self):
        extra_cpp_deps = "\n".join([f'        "{x}",' for x in extra_deps])
        return textwrap.dedent(
            f"""
load("@fbcode_macros//build_defs:python_binary.bzl", "python_binary")

python_binary(
    name="{self.target}",
    srcs = ["{self.py_file}"],
    compile = False,
    deps = [
        "//caffe2:torch",
        "//caffe2/functorch:functorch",
        "//triton:triton",
        "{cur_target}",
    ],
    cpp_deps = [
{extra_cpp_deps}
    ],
    main_module = "{self.path}",
    par_style = "xar",
)
"""
        )

    def write(self, print_msg=True):
        target_file = os.path.join(self.subdir, "TARGETS")
        with open(target_file, "w") as fd:
            fd.write(self.build())
        # log.warning("Wrote isolation TARGETS file at %s", target_file)
        cmd_split = BUCK_CMD_PREFIX + [self.cmd_line_path]
        if print_msg:
            log.warning(
                "Found an example that reproduces the error. Run this cmd to repro - %s",
                " ".join(cmd_split),
            )
        return cmd_split


def minifier_dir():
    path = os.path.join(get_debug_dir(), "minifier")
    if path is None:
        path = f"{tempfile.gettempdir()}/minifier_{getpass.getuser()}"
    if not os.path.exists(path):
        os.makedirs(path, exist_ok=True)
    return path


MAX_CONSTANT_NUMEL_INLINE = 4


class NNModuleToString:
    safe_reprs = [
        torch.nn.Linear,
        torch.nn.Conv1d,
        torch.nn.Conv2d,
        torch.nn.Conv3d,
        torch.nn.BatchNorm1d,
        torch.nn.BatchNorm2d,
        torch.nn.BatchNorm3d,
        torch.nn.LayerNorm,
        torch.nn.Dropout,
        torch.nn.Softmax,
        torch.nn.ReLU,
        torch.nn.GELU,
        torch.nn.Identity,
        torch.nn.MaxPool2d,
        torch.nn.Embedding,
        torch.nn.Tanh,
        torch.nn.ConvTranspose1d,
        torch.nn.GLU,
        torch.nn.LSTM,
        torch.nn.Flatten,
        torch.nn.AdaptiveAvgPool2d,
    ]

    @staticmethod
    def can_convert_to_string(gm):
        cant_convert = set()
        for _, module in gm.named_children():
            if type(module) not in NNModuleToString.safe_reprs:
                cant_convert.add(module)

        if len(cant_convert) > 0:
            log.warning("We have not tested reprs of some modules - %s", cant_convert)
        # TODO - Assuming that all modules can be safely repr'd. Check if that assumption is correct.
        return True

    @staticmethod
    def convert(gm):
        from torch.nn.modules.module import _addindent

        tab = " " * 4

        model_str = textwrap.dedent(
            """
            from torch.nn import *
            class Repro(torch.nn.Module):
                def __init__(self) -> None:
                    super().__init__()
            """
        )

        for module_name, module in gm.named_children():
            module_str = f"{module.__repr__()}"
            # module should be a core torch.nn.Module, so all parameters
            # should be on the same device.
            example_param = next(module.parameters(), None)
            if example_param is not None and example_param.is_cuda:
                module_str = f"{module_str}.cuda()"
            model_str += f"{tab*2}self.{module_name} = {module_str}\n"

        for buffer_name, buffer in gm._buffers.items():
            if buffer is None:
                continue
            # Serialize full data for small buffers
            if buffer.numel() <= MAX_CONSTANT_NUMEL_INLINE:
                from torch._tensor_str import PRINT_OPTS

                assert PRINT_OPTS.threshold >= MAX_CONSTANT_NUMEL_INLINE
                tensor_str = repr(buffer)
            elif torch.is_floating_point(buffer):
                tensor_str = f"torch.randn({list(buffer.shape)}, dtype={buffer.dtype})"
            else:
                tensor_str = (
                    f"torch.randint(1, size={list(buffer.shape)}, dtype={buffer.dtype})"
                )
            if buffer.is_cuda:
                tensor_str = f"{tensor_str}.cuda()"
            model_str += f"{tab*2}self.register_buffer('{buffer_name}', {tensor_str})\n"

        for param_name, param in gm._parameters.items():
            if param is None:
                continue
            maybe_device = ""
            if param.is_cuda:
                maybe_device = ', device="cuda"'
            tensor_str = f"torch.nn.Parameter(torch.randn({list(param.shape)}, dtype={param.dtype}{maybe_device}))"
            model_str += f"{tab*2}self.{param_name} = {tensor_str}\n"

        # TODO - Keep this code for now. But, I don't think we will need this.
        # attrs = dir(gm)
        # for attr in attrs:
        #     if "_tensor_constant" in attr:
        #         val = getattr(gm, attr)
        #         model_str += f"    {attr} = {val!r}\n"

        model_str += f"{_addindent(gm.code, 4)}\n"
        return model_str


@functools.lru_cache(None)  # subprocess is expensive
def _cuda_system_info_comment():
    if not torch.cuda.is_available():
        return "# torch.cuda.is_available()==False, no GPU info collected\n"

    model_str = "# CUDA Info: \n"
    try:
        cuda_version_out = subprocess.check_output(["nvcc", "--version"])
        cuda_version_lines = cuda_version_out.decode().split("\n")
        comment = "".join([f"# {s} \n" for s in cuda_version_lines if s not in [""]])
        model_str += f"{comment}\n"
    except (FileNotFoundError, subprocess.CalledProcessError):
        model_str += "# nvcc not found\n"

    gpu_names = Counter(
        torch.cuda.get_device_name(i) for i in range(torch.cuda.device_count())
    )

    model_str += "# GPU Hardware Info: \n"
    for name, count in gpu_names.items():
        model_str += f"# {name} : {count} \n"
    model_str += "\n"
    return model_str


def generate_config_string(*, stable_output=False):
    import torch._functorch.config
    import torch._inductor.config

    if stable_output:
        return "# config omitted due to stable_output=True"

    experimental_config = torch.fx.experimental._config.codegen_config()  # type: ignore[attr-defined]
    return f"""\
import torch._dynamo.config
import torch._inductor.config
import torch._functorch.config
import torch.fx.experimental._config
{torch._dynamo.config.codegen_config()}
{torch._inductor.config.codegen_config()}
{torch._functorch.config.codegen_config()}
{experimental_config}
"""


def get_minifier_repro_path():
    return os.path.join(minifier_dir(), "minifier_launcher.py")


def helper_for_dump_minify(contents):
    minified_repro_path = get_minifier_repro_path()
    log.warning("Writing minified repro to:\n%s", minified_repro_path)

    if use_buck:
        BuckTargetWriter(minified_repro_path).write()
    try:
        with open(minified_repro_path, "w") as fd:
            fd.write(contents)

    except OSError as e:
        log.exception("")
        raise NotImplementedError("Could not write to {minified_repro_path}") from e


class AccuracyError(Exception):
    pass


def clone_inputs_retaining_gradness(example_inputs):
    """
    This clone inputs is different from utils clone_input. In case of minifier,
    all the tensors are leaf tensors while creating a new graph. So, we set the
    requires_grad field w/o checking the leafness of the tensor.
    """
    cloned_inputs = clone_inputs(example_inputs)
    for idx in range(len(example_inputs)):
        if isinstance(cloned_inputs[idx], torch.Tensor):
            cloned_inputs[idx].requires_grad_(example_inputs[idx].requires_grad)
    return cloned_inputs


def run_fwd_maybe_bwd(gm, args, only_fwd=False, disable_clone=False):
    """
    Runs a forward and possibly backward iteration for a given mod and args.

    When disable_clone is True, we will use args as-is without cloning.
    This is higher fidelity but we may destroy the args in the process.
    """
    from .testing import collect_results, reduce_to_scalar_loss, requires_bwd_pass

    gm = copy.deepcopy(gm)
    if not disable_clone:
        args = clone_inputs_retaining_gradness(args)

    if hasattr(gm, "zero_grad"):
        gm.zero_grad(True)

    # TorchInductor returned callable expects lists. So, may need a boxed calling convention.
    out = gm(args) if hasattr(gm, "_boxed_call") else gm(*args)

    if only_fwd:
        return out
    if requires_bwd_pass(out):
        loss = reduce_to_scalar_loss(out)
        loss.backward()
    return collect_results(gm, out, None, args)


def same_two_models(
    gm,
    opt_gm,
    example_inputs,
    only_fwd=False,
    *,
    require_fp64=False,
    ignore_non_fp=False,
):
    """
    Check two models have same accuracy.

    require_fp64: if True, raise an error if we unable to calculate the fp64 reference
    ignore_non_fp: if True, do not compare outputs which are not floating point.  This
        is mostly useful for the minifier (which wants to avoid quantizing floating point
        error into integer/boolean error)
    """
    from .utils import same

    ref = run_fwd_maybe_bwd(gm, example_inputs, only_fwd)

    fp64_ref = None
    if config.same_two_models_use_fp64:
        try:
            fp64_model, fp64_examples = cast_to_fp64(
                copy.deepcopy(gm), clone_inputs_retaining_gradness(example_inputs)
            )
            fp64_ref = run_fwd_maybe_bwd(fp64_model, fp64_examples, only_fwd)
        except Exception:
            if require_fp64:
                raise RuntimeError(  # noqa: B904
                    "Could not generate fp64 outputs, workaround with torch._dynamo.config.same_two_models_use_fp64 = False"
                )
            log.warning("Could not generate fp64 outputs")

    try:
        res = run_fwd_maybe_bwd(opt_gm, example_inputs, only_fwd)
    except Exception as e:
        # This means that the minified graph is bad/exposes a different problem.
        # As we are checking accuracy here, lets log the exception and return True.
        log.exception(
            "While minifying the program in accuracy minification mode, "
            "ran into a runtime exception which is likely an unrelated issue."
            " Skipping this graph."
        )
        return True

    passing = same(
        ref,
        res,
        fp64_ref,
        tol=config.repro_tolerance,
        equal_nan=True,
        ignore_non_fp=ignore_non_fp,
    )
    return passing


def cast_dtype_args_to_fp64(model):
    for node in model.graph.nodes:
        if (
            node.op == "call_function"
            and node.target == torch.ops.prims.convert_element_type.default
        ):
            assert len(node.args) == 2
            if is_float_dtype(node.args[1]) and node.args[1] != torch.float64:
                node.args = (node.args[0], torch.float64)
        if node.op == "call_function":
            dtype = node.kwargs.get("dtype")
            if dtype is not None and is_float_dtype(dtype):
                new_kwargs = dict(node.kwargs)
                new_kwargs["dtype"] = torch.float64
                node.kwargs = new_kwargs

    model.graph.lint()
    model.recompile()
    return model


def cast_to(dtype, model, inputs):
    from torch.utils._pytree import tree_map

    model = model.to(dtype)
    if dtype == torch.float64:
        # If casting to fp64 for accuracy comparison, we need to
        # replace dtype arguments embedded in the graph with fp64
        model = cast_dtype_args_to_fp64(model)

    inputs = tree_map(
        lambda x: x.to(dtype)
        if isinstance(x, torch.Tensor) and x.is_floating_point()
        else x,
        inputs,
    )
    return model, inputs


def cast_to_fp64(model, inputs):
    return cast_to(torch.float64, model, inputs)


def backend_accuracy_fails(
    gm,
    example_inputs,
    compiler_fn,
    only_fwd=False,
    *,
    require_fp64=False,
    ignore_non_fp=False,
):
    try:
        compiled_gm = compiler_fn(
            copy.deepcopy(gm), clone_inputs_retaining_gradness(example_inputs)
        )
        return not same_two_models(
            gm,
            compiled_gm,
            example_inputs,
            only_fwd,
            require_fp64=require_fp64,
            ignore_non_fp=ignore_non_fp,
        )
    except Exception as e:
        # This means that the minified graph is bad/exposes a different problem.
        # As we are checking accuracy here, lets log the exception and return False.
        log.exception(
            "While minifying the program in accuracy minification mode, "
            "ran into a runtime exception which is likely an unrelated issue."
            " Skipping this graph"
        )
        return False


# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
#                       REPRO SUPPORT CODE
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #


# Helper functions for computing what the default values of tensor
# values should be.  These all coincide with factory functions, e.g., torch.empty


def _stride_or_default(
    stride: Optional["torch._prims_common.StrideType"],
    *,
    shape: "torch._prims_common.ShapeType",
) -> "torch._prims_common.StrideType":
    return stride if stride is not None else utils.make_contiguous_strides_for(shape)


def _mk_defaulter(d: T) -> Callable[[Optional[T]], T]:
    return lambda x: x if x is not None else d


_dtype_or_default = _mk_defaulter(torch.float32)
_device_or_default = _mk_defaulter(torch.device("cpu"))
_storage_offset_or_default = _mk_defaulter(0)
_requires_grad_or_default = _mk_defaulter(False)
_is_leaf_or_default = _mk_defaulter(False)


class NopInputReader:
    def __init__(self) -> None:
        self.total = 0

    def storage(self, storage_hash, nbytes, *, device=None, dtype_hint=None):
        self.total += 1

    def tensor(self, *args, **kwargs):
        pass

    def symint(self, *args, **kwargs):
        pass


# TODO: Support bundling the entire repro into a zip file for ease of
# transferring around
class InputReader:
    def __init__(self, save_dir=None, *, pbar=None):
        # If None, we will generate random data instead.  It's important
        # to natively support this use case as it will allow people to
        # share repros without including the real data, if the problem
        # reproduces even on random data.
        if save_dir is None:
            log.warning("no save_dir specified, will generate random data")
        self.store = ContentStoreReader(save_dir) if save_dir is not None else None
        self.args = []
        self.pbar = pbar

    def storage(self, storage_hash, nbytes, *, device=None, dtype_hint=None):
        if self.pbar is not None:
            self.pbar.update(1)
        device = _device_or_default(device)
        dtype_hint = _dtype_or_default(dtype_hint)
        if self.store is not None and storage_hash is not None:
            try:
                storage = self.store.read_storage(storage_hash)
            except FileNotFoundError:
                pass
            else:
                if device != storage.device:
                    log.warning("device mismatch: %s != %s", device, storage.device)
                    # TODO: transfer it to the right device?  But failing this
                    # way would be very mysterious!  Would have been better
                    # not to store device in the serialized format...
                return storage
        log.warning("could not load %s, generating random data instead", storage_hash)
        shape = (nbytes // dtype_hint.itemsize,)
        stride = _stride_or_default(None, shape=shape)
        return rand_strided(shape, stride, dtype_hint, device).untyped_storage()

    def tensor(
        self,
        storage,
        shape,
        stride=None,
        *,
        storage_offset=None,
        dtype=None,
        requires_grad=None,
        is_leaf=None,
        **metadata,
    ):
        stride = _stride_or_default(stride, shape=shape)
        storage_offset = _storage_offset_or_default(storage_offset)
        dtype = _dtype_or_default(dtype)
        is_leaf = _is_leaf_or_default(is_leaf)
        requires_grad = _requires_grad_or_default(requires_grad)
        t = torch.tensor(
            [], dtype=dtype, device=storage.device, requires_grad=requires_grad
        )
        with torch.no_grad():
            t.set_(storage, storage_offset, shape, stride)
        if not is_leaf:
            # Fake up some autograd history in a very naughty way
            with torch.enable_grad():
                t = t.clone(memory_format=torch.preserve_format)
            with torch.no_grad():
                t.set_(storage, storage_offset, shape, stride)
        assert torch._subclasses.meta_utils.safe_is_leaf(t) == is_leaf
        torch._utils.set_tensor_metadata(t, metadata)
        self.args.append(t)
        return t  # for BC

    def symint(self, val):
        self.args.append(val)
        return val  # for BC


# Here is our writer strategy:
#  1. We will stream all of the inputs to disk
#  2. You can now deterministically randomize the inputs, or reload
#     the inputs from disk
#  3. You can YOLO run the script without the inputs, in which case
#     we'll fill the inputs with random data and pray.  This is the
#     legacy behavior, but it's also useful if you want to find out
#     if we're so broken even random inputs trigger it
#  4. We could offer an in process "check if the randomized thing
#     works too" but this is delicate so we don't do it


class InputWriter:
    def __init__(self, save_dir, *, stable_hash=False):
        self._lines = []
        # TODO: consider ensuring tensor and storage counters line up?
        self.storage_counter = itertools.count()
        self.save_dir = save_dir
        self.store = (
            ContentStoreWriter(save_dir, stable_hash=stable_hash)
            if save_dir is not None
            else None
        )
        self.seen_storages = {}

    def lines(self):
        r = [
            "def load_args(reader):",
        ]
        r.extend(f"    {l}" for l in self._lines)
        # In case we need to change the internal format of load_args
        # in an FC-breaking way
        r.append("load_args._version = 0")
        return r

    # Storages are untyped, but we need to initialize them with data if
    # we don't have the real data, so we give a hint saying what kind
    # of initialization may be appropriate
    #
    # If we had a FakeTensor, device_hint tells us what device should be
    def storage(self, untyped_storage, *, dtype_hint=None, device_hint=None) -> str:
        ws = StorageWeakRef(untyped_storage)
        v = self.seen_storages.get(ws)
        if v is not None:
            return v
        v = f"buf{next(self.storage_counter)}"
        maybe_dtype_hint = ""
        if _dtype_or_default(None) != _dtype_or_default(dtype_hint):
            maybe_dtype_hint = f", dtype_hint={dtype_hint!r}"
        # TODO: being optional on device is kind of pointless as the default
        # is CPU but most repros we care about are CUDA
        maybe_device = ""
        device = untyped_storage.device
        if device.type == "meta":
            assert device_hint is not None
            device = device_hint
        if _device_or_default(None) != device:
            maybe_device = f", device={device!r}"
        nbytes = untyped_storage.nbytes()
        storage_hash = None
        if self.store is not None and untyped_storage.device.type != "meta":
            storage_hash = self.store.write_storage(untyped_storage)
        self._lines.append(
            f"{v} = reader.storage({storage_hash!r}, {nbytes!r}{maybe_device}{maybe_dtype_hint})"
        )
        self.seen_storages[ws] = v
        return v

    def tensor(self, name, t) -> None:
        from torch.fx.experimental.symbolic_shapes import statically_known_true

        storage = self.storage(
            t.untyped_storage(), dtype_hint=t.dtype, device_hint=t.device
        )
        args = []
        # NB: this is positional, must come first
        if _stride_or_default(None, shape=t.shape) != t.stride():
            args.append(str(tuple(t.stride())))
        if _dtype_or_default(None) != t.dtype:
            args.append(f"dtype={t.dtype!r}")
        if not statically_known_true(
            _storage_offset_or_default(None) == t.storage_offset()
        ):
            args.append(f"storage_offset={t.storage_offset()!r}")
        tensor_metadata = torch._utils.get_tensor_metadata(t)
        if tensor_metadata:
            args.extend(f"{k}={v!r}" for k, v in tensor_metadata.items())
        if _requires_grad_or_default(None) != t.requires_grad:
            args.append(f"requires_grad={t.requires_grad!r}")
        is_leaf = torch._subclasses.meta_utils.safe_is_leaf(t)
        if _is_leaf_or_default(None) != is_leaf:
            args.append(f"is_leaf={is_leaf!r}")
        self._lines.append(
            "reader.tensor("
            + ", ".join([storage, str(tuple(t.shape)), *args])
            + f")  # {name}"
        )

    # TODO: this doesn't actually symint atm
    def symint(self, name, val) -> None:
        if isinstance(val, torch.SymInt):
            val = val.node.hint
        self._lines.append(f"reader.symint({val!r})  # {name}")


def aot_graph_input_parser(
    func: Callable[[List[Tensor]], List[Tensor]],
    device: str = "cuda",
    sym_shapes: Optional[Dict[str, int]] = None,
    default_sym_shape: Optional[int] = None,
) -> Dict[str, Any]:
    """
    Takes in a function which has been printed with print_readable() and constructs kwargs to run it.

    Handles Tensor inputs, Symints, and a graph module which might have tensor constants.

    Consider a function `forward` defined as follows:

    def forward(self, primals_1: "f32[1001, 6]", primals_2: "f32[s0]", primals_3: "Sym(s0)",):
        _tensor_constant0: "i64[4190]" = self._tensor_constant0
        # Further implementation

    kwargs = aot_graph_input_parser(forward)
    forward(**kwargs)
    """

    from torch.fx.graph import dtype_abbrs

    dtype_map = {value: key for key, value in dtype_abbrs.items()}
    dtype_pattern = "|".join(dtype_abbrs.values())

    # Extracting the source code from the function
    source = inspect.getsource(func)

    # Regular expressions
    tensor_assignment_regex = rf"(_tensor_constant\d+): \"({dtype_pattern})\[\s*(.*?)\s*\]\" = self\.(_tensor_constant\d+)"
    tensor_regex = rf"({dtype_pattern})\[\s*(.*?)\s*\]"
    sym_shape_regex = r"Sym\((s\d+)\)"

    class TensorContainer:
        "Container for tensors as attributes"

    # Dictionary for tensors from annotations
    kwargs: Dict[str, Any] = {}

    sym_shapes = sym_shapes or {}

    def get_sym_int(symint):
        torch._check(
            symint in sym_shapes or default_sym_shape is not None,
            lambda: f"{symint} not in symbolic_shapes and default sym shape not passed in",
        )
        return sym_shapes.get(symint, default_sym_shape)

    def gen_tensor(shape, dtype) -> Tensor:
        # Resolve symbolic shapes to concrete values
        resolved_shape = []
        dynamic_dims = []
        for i, dim in enumerate(shape):
            dim = dim.strip()
            if "s" in dim:
                s = get_sym_int(dim)
                resolved_shape.append(s)
                dynamic_dims.append(i)
            else:
                if dim:
                    resolved_shape.append(int(dim))

        constructor = torch.randn if dtype.is_floating_point else torch.zeros
        out = constructor(resolved_shape, dtype=dtype, device=device)  # type: ignore[call-arg]
        for d in dynamic_dims:
            torch._dynamo.mark_dynamic(out, d)
        return out

    # Parse function annotations for tensor generation
    annotations = func.__annotations__
    for param, annotation in annotations.items():
        # Skip 'return' annotation
        if param == "return":
            continue

        match = re.search(tensor_regex, annotation)
        if match:
            data_type, shape_str = match.groups()
            shape = tuple(shape_str.split(","))
            dtype = dtype_map[data_type]
            kwargs[param] = gen_tensor(shape, dtype)

        match = re.search(sym_shape_regex, annotation)
        if match:
            kwargs[param] = get_sym_int(match.group(1))

    if "self" in inspect.signature(func).parameters:
        container = TensorContainer()
        kwargs["self"] = container
        for match in re.finditer(tensor_assignment_regex, source):
            attr_name, data_type, shape_str, _ = match.groups()
            shape = tuple(shape_str.split(","))
            dtype = dtype_map[data_type]
            setattr(container, attr_name, gen_tensor(shape, dtype))

    return kwargs


def profile_to_file(filename: str) -> Callable[[T], T]:
    """
    Decorator to cProfile a given function and save the result to disk on process exit.

    Args:
        filename: filename to save profile to
    """
    prof = cProfile.Profile()
    filename = os.path.abspath(os.path.expanduser(filename))

    def decorator(fn):
        @functools.wraps(fn)
        def wrapper(*args, **kwargs):
            prof.enable()
            try:
                return fn(*args, **kwargs)
            finally:
                prof.disable()

        return wrapper

    def save_it():
        prof.dump_stats(filename)
        sys.stderr.write(
            textwrap.dedent(
                f"""\
                Wrote profile to {filename}, view with:

                    snakeviz {filename}

                """
            )
        )

    atexit.register(save_it)
    return decorator
